
The reactions of 3,4-di-t-butyl-1-[(p-tolyl)sulfonylimino]-
1,1-dihydrothiophene with RONa and RSNa furnished 2-
alkoxy- and 2-alkylthio-substituted thiophenes, respectively,
through Michael adduct formation.  The reaction of 3,4-di-t-
butylthiophene 1-oxide with RSNa gave 1,6-Michael adducts,
whereas the corresponding reaction of 3,4-di-t-butylthiophene
1,1-dioxide produced a mixture of 1,4- and 1,6-adducts. 

The chemistry of thiophene 1-oxides is a matter of recent
keen interest,1 whereas that of thiophene 1,1-dioxides has been
documented in full detail.2 On the other hand, the chemistry of
1-imino and 1,1-diimino derivatives of thiophenes has been
scarcely studied.  Thus, the 1-imino derivatives of tetrachloro-
thiophene had been the sole example of monocyclic thiophene
derivatives,3 until, quite recently, we have reported the prepara-
tion of 3,4-di-t-butyl-1-[(p-tolyl)sulfonylimino]-1,1-dihydrothio-
phene (2) and 3,4-di-t-butyl-1,1-bis[(p-tolyl)sulfonylimino]-1,1-
dihydrothiophene (3) by reaction of sterically congested 3,4-di-t-
butylthiophene (1) with N-(p-tolylsulfonylimino)phenyliodinane
(TsN=IPh).4 As the extension of this study, we have examined
detosylation of 2 to obtain the corresponding parent 1-imino
derivative. Interestingly, however, the attempted alkaline
hydrolysis of 2 in refluxing aqueous MeOH5 provided 3,4-di-t-
butyl-2-methoxythiophene (4a) as the major product, which
corresponds formally to the Pummerer reaction product.
Attempted detosylation of 2 by a conventional method, treat-
ment with concentrated H2SO4,

6 produced a complex mixture
containing 1 and some other products.  The above unexpected
results, which have never been observed in the chemistry of
thiophene 1-oxides and thiophene 1,1-dioxides, have led us to a
comparison study of nucleophilic reactivities of 2, 3,4-di-t-
butylthiophene 1-oxide (8)7 and 1,1-dioxide (9).8

Thus, the reaction of 2 with NaOH in refluxing aqueous
MeOH for 48 h gave 4a9,10 (75%) and p-toluenesulfonamide
(TsNH2) (79%), whereas 2 was inert to heating with NaOH in
aqueous dioxane at 80 °C for 24 h.  Heating 2 with EtONa in
EtOH at 70 °C for 2 h also gave the 2-ethoxythiophene (4b)
(68%) and TsNH2 (69%), in addition to the further unexpected
product, configurationally pure 1,3-diene (6a), in 17% yield.9,10

Sulfur nucleophiles, MeSNa and PhSNa, reacted with 2
much more easily at room temperature in MeOH for 48 h to give

thiophenes (5a) (74%) and (5b) (49%), respectively.  In the case
of the latter nucleophile, the configurationally pure 1,3-diene (7),
containing two phenylthio groups, was also isolated in 20%
yield.9,10 Assignment of the stereochemistry of the dienes 6a and
7 is based on the mechanistic grounds as discussed later.    

Although it is known that alkaline treatment of sulfilimines
produces the corresponding sulfoxides,11 such hydrolysis of 2,
which leads to the 1-oxide 8, was never observed throughout this
study.

Next, reactions of the 1-oxide 8 and 1,1-dioxide 9 with
nucleophiles were investigated for comparison.  Either 8 or 9
failed to react with MeONa; both 8 and 9 were recovered quan-
titatively when heated with MeONa in refluxing MeOH for 48
h.  Meanwhile, sulfur nucleophiles, MeSNa and PhSNa, reacted
with 8 in MeOH at room temperature to give the 1,6-Michael
adducts (10a) (90%) and (10b) (79%), respectively.9,12 It is
noteworthy that these reactions provides a facile synthesis of
cyclic alkenes 10 in which two bulky t-butyl groups are placed
in cis-orientation.  When the reaction of 8 with MeSNa was car-
ried out under the forcing conditions (reflux, MeOH, 72 h), 5a
was formed at the sacrifice of 10a though in a low yield (11%),
thus suggesting that 1,6-adducts are the probable intermediates
for the formation of 4 and 5 from 2. 

Finally, the reaction of 9 with MeSNa produced a mixture
of 1,6- and 1,4-adducts (11 and 12) in the ratio 56:44 in 94%
combined yield.9,12,13
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Although the reactivities of N-p-tolylsulfonylsulfilimines
toward nucleophiles have been examined extensively,11,14 the
aforementioned reactions on 2 are unprecedented.  Reportedly,
the alkaline hydrolysis of cyclic N-p-tolylsulfonylsulfilimines
in MeOH gave Pummerer reaction products, α-methoxy-substi-
tuted sulfides, as main products,14a but the mechanism proposed
therein14a–b would not be true of the present case.  Thus, the
reaction would be best explained as follows.  The Michael addi-
tion of Nu– to the less hindered 2-position of 2 produces 2,5-
dihydrothiophenes (13) initially, which is followed by hydrogen
migration that leads to ylide intermediates (14).  The Stevens-
like [1,2]-rearrangement of 14 then affords 2,5-dihydrothio-
phenes (15).  Finally, base-catalyzed elimination of TsNH2
from 15 results in the formation of 2-substituted thiophenes 4
and 5.  Meanwhile, the ring-opening of ylides 14 would provide
dienes 6.  This type of ring-opening was reported on a series of
the sulfur ylides (16);15 the ring-opening process can be pre-
sumed as an electrocyclic process of 6π-electron system, which
takes place in a concerted disrotatory manner.16 Finally, the sub-
stitution reaction of 6b by excessive PhSNa explains the forma-
tion of 7.  In addition, the formation of 6 (7) provides supporting
evidences for the intermediacy of the Michael adducts 13.

In conclusion, 2, 8, and 9 all serve as Michael acceptors
toward thiolates, whereas only 2 is reactive to alkoxides. In
addition, the Michael adducts of 2 undergo a Stevens-like [1.2]-
rearrangement to furnish the formal Pummerer reaction prod-
ucts. 
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